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1 Introduction 

Forest landscape restoration is increasingly a high-technology, data-intensive process.  The Global 
Partnership on Forest Landscape Restoration defines forest landscape restoration as: “an active process 
that brings people together to identify, negotiate and implement practices that restore an agreed 
optimal balance of the ecological, social and economic benefits of forests and trees within a broader 
pattern of land uses”.1 Technology now contributes and facilitates every stage of the forest restoration 
process2, from identifying degraded sites and corridors and providing baselines to monitor spatial and 
temporal changes in habitats, to identifying species and even collecting and planting seeds.  

Remote sensing technologies can provide an extensive range of information about sites and whole 
forests. Particularly when used in combination remote sensing technologies can determine tree 
dimensions, forest types, crown density, basal cover, above-ground biomass (AGB), the presence and 
mass of deadwood, the extent and nature of forest canopies, vegetation and even species composition 
above and below the forest canopy. This information can, in turn, be used to determine the carbon 
stored in the biomass, the extent of biodiversity, structural complexity, and where the forest is on the 
spectrum between degraded and the reference, or restored state.3 

There is no one optimal remote sensing technology. Choices between technologies, whether platform, 
sensor or software, will often involve trade-offs and depend on financial and technological constraints 
and the nature of the study at hand. 

Platforms are typically presented as a choice between spaceborne, airborne, and ground-based. 
However, there is substantial variation within each broad category. As Section 2 sets out, the range of 
satellites available is increasing all the time, each offering different services. Although historically 
including helicopters and planes, airborne services have largely become redundant, giving way to high-
resolution satellite imagery and unmanned ariel vehicles (UAVs). Here too, as Section 3 makes clear, 
choices depend on cost, distance, sensors, and availability. Ground-based platforms include cameras, 
mobile phones, and sensors. However, in many respects, the “system is the sensor,” and comprehensive 
results often depend on how various platforms complement each other and are combined. 

Sensors are critical to remote sensing, and the choice of sensor is again dependent on cost, 
availability, and need. Spaceborne and Airborne Sensors collect signals reflected from the earth, and 
can be organized into active sensors - in which the sensor sends and receives a signal (for example, 
RADAR and Light Detecting and Ranging (LiDAR)), and passive sensors, whereby the sensor collects 
signals naturally transmitted from the earth’s surface. Section 4 will illustrate that sensors are suited to 
different uses, and often demand trade-offs, depending on the study’s spatial (global to local) and 
temporal (daily to yearly) scale and questions asked. 

Increasingly the choice of technology must consider the software, computing power, and expertise 
available to interpret results. Sensors, whether mounted on satellites, drones, handheld devices, or 
living trees, collect data that requires interpretation and communication.  

As computing power increases and becomes more available, the ability to interpret subtle differences 
in signals at the level of a single pixel amongst millions opens up opportunities, even for data collected 
in the recent past. Section 6 will introduce some of the main approaches to data collection and 
interpretation and, again, point to the benefits of combining sensors, technologies, and platforms. 

 

1 https://www.forestlandscaperestoration.org/ 
2 Camarretta, P. A. (2020). Monitoring forest structure to guide adaptive management of forest restoration: a review of remote 
sensing approaches. _New Forests_, 573–596 
3 Pandey, C. and Arellano, P. 2023. Advances in Remote Sensing for Forest Monitoring, First Edition. John Wiley and Sons Ltd. 

http://www.forestlandscaperestoration.org/
http://www.forestlandscaperestoration.org/
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2 From Space: Satellites 

From the first Landsat mission in 1972 and the launch of the first commercial satellite systems in 1999, 
the role of satellites has advanced significantly. Moreover, the usefulness of the data and images 
collected by satellites has increased at arguably a faster rate as the knowledge collected has been made 
freely available, as have the tools and computing power to interpret it. Although the costs of launching 
satellites is prohibitive to most, the costs of accessing satellite output have fallen almost to zero, putting 
the onus on the analyst to find new ways of harnessing a rapidly increasing amount of information, and 
communicating it effectively to resource managers. 

Satellite imagery confers a range of benefits and will suffice for most uses. Satellites carry different 
sensors and combinations of sensors (see Section 4), producing a range of types of imagery. As such, 
information extracted from satellite images can provide the basis for much of the analysis required. 
Section 7.3 offers a practical example of using satellite imagery to monitor changes in land cover in 
Cambodia. 

The regularity of images is also increasing. Historically satellites would take consistent measurements 
at specific time intervals, depending on orbits. Landsat, for example, would revisit the same spot every 
16 days.4 Improved technology, however, means that some commercial satellites can focus on specific 
areas for prolonged periods. As they orbit the earth, newer generations of satellites can focus on 
particular points for long periods. When used as a “constellation,” the burden can be shared, reducing 
the time between visits (e.g. Sentinel). A recent survey of the use of remote sensing technologies found 
that Landsat has proved to have particular advantages over other systems, not least its status as the 
longest uninterrupted earth observation program and the first to offer free images. Nevertheless, as 
the same study indicates, rival systems such as Sentinel 2 and RapidEye will provide similar long-term 
quality imagery over the next decade or so.5 

The low cost, consistency, geographic scale, and range of satellite data grant satellite imagery 
significant advantages over UAVs. However, the image resolution tends to be coarser than lower-level 
sensors and less suitable for detailed measurements of smaller areas, although this is changing with 
newer generations of satellites. Satellite observations are also determined by “temporal resolution” or 
revisit times, potentially limiting the opportunity to make immediate or regular observations. Satellites 
may also be limited to particular territories at particular times. As high resolution sensors tend to take 
longer to cover a target area there also tends to be a trade-off between temporal and spatial solutions. 
Even so, technological advances, including the availability of higher resolutions mean that satellite 
imagery is increasingly considered a valid alternative.  

2.1 Satellites  

New generations of satellites carry increasingly sensitive sensors, opening up possibilities for forest 
and biodiversity assessment monitoring. For example, improved sensors in Landsat 8 and 96 have 
increased vegetation sensitivity7, enabling more precise detection and analysis of above-ground 
biomass and carbon.8 Similarly, the three red edge bands included in Sentinal 2 also improve biomass 

 

4 Lechner, M. et al. 2020. Applications in Remote Sensing to Forest Ecology and Management. One Earth. Accessed here: 
https://core.ac.uk/reader/328760320 
5 Gyamfi-Ampadu, E. and Gebreslasie, M. 2021. Two Decades Progress on the Application of Remote Sensing for Monitoring 

Tropical and Sub-Tropical Natural Forests: A Review. Forests 2021, 12, 739. https://doi.org/10.3390/ f12060739 
6 Landsat 9. 2021. Webpage, accessed here; https://landsat.gsfc.nasa.gov/satellites/landsat-9/ 
7 Roy, D.P. et al. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 
2014, 145, 154–172.  
8 Gyamfi-Ampadu, E. and Gebreslasie, M. 2021. Two Decades Progress on the Application of Remote Sensing for Monitoring 

Tropical and Sub-Tropical Natural Forests: A Review. Forests 2021, 12, 739. https://doi.org/10.3390/ f12060739 
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and carbon estimates.9 This improved performance, coupled with comprehensive coverage and low 
costs to users, has resulted in a rapid increase in the use of both systems in the last few years.10 

2.2 Available Satellites 

Analysts have access to imagery from a growing range of satellites. Originally, operating in isolation, 
satellites now often form “constellations”, which can increase the regularity of coverage and the 
combination of technologies employed. New satellites are also scheduled for launch, with new, more 
sophisticated sensors on board such as ALOS-3 and NASA-ISRO Synthetic Aperture Radar (NISAR) that 
will provide detailed images at greater frequencies (Table 2.1). NISAR, for example, will provide biweekly 
observations of 90% of each of the world’s forests using both standard S-bands and L-bands (see Section 
4.3), able to penetrate canopy, and so provide estimates of forest volume and biomass over time.11  

Table 2.1: Remote Sensing Satellites, Planned and In Operation 

Accessibility 
Satellite/Sensor 

name 
Year 

launched 

Number of 
bands or 

polarizations 
Resolution 

Revisit 
time/day 

Open Landsat 9 2021 11 30m, 15m, 100m 16 

Open Landsat 8 2013 11 30m, 15m, 100m 16 

Open Landsat 7 1999 8 30m, 15m, 60m 16 

Open Sentinel-2 (A and B) 2015 13 10m, 20m, 60m 5 

Open Sentinel-1 2014 VV, HV, HH, VH 10m 12 

Open MODIS 1999 36 250m, 500m, 1000m 1-2 

Open and 
commercial 

ALOS2/PALSAR-2 2014 HH, HV, VH, VV 0.625m - 100m  

Commercial WorldView-3 2014 29 1.24 1–4.5 

Commercial WorldView-4 2016 5 1.24 1–4.5 

Commercial Pléiades-1A and 1B 2011 5 2 1 

Commercial RADARSAT-2 2007 VV, HV, HH, VH 3-100m 24 

Open NISAR To be 
launched 
in 2024 

L-band, S-band 
HH, HV, VH, VV 

3-10m 12 

Open and 
commercial 

ALOS-3 Launched 
February 

2023. 

7 2.8m, 3.2m 35 

 

9 Gyamfi-Ampadu, E. and Gebreslasie, M. 2021. Two Decades Progress on the Application of Remote Sensing for Monitoring 
Tropical and Sub-Tropical Natural Forests: A Review. Forests 2021, 12, 739. https://doi.org/10.3390/ f12060739 
10 Gyamfi-Ampadu, E. and Gebreslasie, M. 2021. Two Decades Progress on the Application of Remote Sensing for Monitoring 

Tropical and Sub-Tropical Natural Forests: A Review. Forests 2021, 12, 739. https://doi.org/10.3390/ f12060739 
11 NASA. 2022. Monitoring Global Forest Resources. NASA. Accessed here: 

https://nisar.jpl.nasa.gov/documents/16/NISAR_Applications_Forest_Resources1.pdf 
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3 Airborne Technologies 

Airborne technologies include airplanes, helicopters, and UAVs. As technology progresses, battery life 
improves, and UAVs become increasingly affordable, UAVs are the tool of choice for more localized 
studies. UAVs can be fixed or rotor wing. They differ in terms of size, payloads, range, and battery power. 
Table 3.1 provides a summary of commonly used UAVs and manned aircraft. 

Table 3.1: Specifications of Some Small Unmanned Ariel Vehicles and Manned Aircrafts in Forest Monitoring 

Platform name System type Sensor type and name Forest applications Source 

DJI M600 Pro Rotary wing Lidar: RIEGL miniVUX-1 UAV Tree height (Chen, 2022) 

DJI Phantom 4 Pro Rotary wing RGB Aboveground biomass (Swayze, 2022) 

DJI Matrice 600 
Pro 

Rotary wing Velodyne VLP-32c LiDAR Stem volume, tree 
DBH, tree height, 

aboveground biomass 

(Dalla Corte, 
2022) 

DJI Phantom 4 
RTK 

Rotary wing Complementary Metal-
Oxide Semiconductor 

(CMOS) multispectral sensor 

Pest infestation (Xu, 2022) 

Cessna 208 
Caravan manned 
aircraft 

Manned aircraft Leica Geosystems 
TerrainMapper LiDAR 

sensor 

Aboveground 
biomass 

(Hantao Li, 
2022) 

The main advantages of drones and other UAVs are their mobility, relative cost, and, depending on 
payload, ability to utilize monitoring and sensor technologies and carry and collect data and even 
seeds. From a practical perspective, drones can access otherwise inaccessible sites on a regular basis, 
and their relative simplicity also means they can be easily operable with minimum levels of training. 
Drones, for example, are increasingly used as part of Community Based Forest Assessments12 and other 
projects in which community members and lay people can support scientific or monitoring programs. 
As discussed below, limitations increasingly lie not in the access to or operation of drone technology 
but in the processing and interpretation of collected data. 

3.1 Uses of Unmanned Ariel Vehicles 

The effectiveness of UAVs in forest monitoring lies mainly in the sensors they carry, the information 
they can collect, and its post-processing and interpretation. Their relative proximity to the ground and 
the smaller study areas mean that drone cameras tend to take images at a higher resolution than 
satellite. When combined with appropriate software and sensors, UAVs can serve a number of uses: 

• Site Surveys: Drones can undertake initial identification and surveys of interested sites. Combinations 
of camera technology and other sensors can help provide accurate survey site baselines.  

• Site Monitoring: In subsequent periods, drones can monitor the progress of restoration efforts and 
observe encroachments onto sites.   

• Species Recognition: Drones can be used to identify plant and species types. Accuracy can be 
improved when combined with other platforms and sensors. They can, for example, be used to 
survey canopies and identify the location of native species, mother trees, and seed sources.  

• Seed Collection and Planting: When fitted with robotic arms, suction tubes or rotating brushes, 
drones can collect seeds from remote sites, and even, with fitted with “seed bombs” can plant 
seeds in forest landscapes.13  

• Data Mules: As mules, drones can collect data from digital camera traps and other static, ground-
based sensors, via cellular telephone networks or other technologies.14 

 

12 Paneque-Galvez et. al. 2014. Small Drones for Community-Based Forest Monitoring: An Assessment of Their Feasibility and 
Potential in Tropical Areas. Forests, 5, 1481-1507. 
13 Pedrini, S. et al. 2021. Smart seed for automated forest restoration. In Elliott, S., G. Gale and M. Robertson (Eds.), 2020. 
Automated Forest Restoration: Could Robots Revive Rain Forests? Forest Restoration Research Unit, Chiang Mai University, 
Thailand. 
14 See as an example the “Wadi Drone” at https://wadi.io/ 
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4 Sensors 

4.1 Understanding Sensors 

As digital cameras capture visible light, sensors can detect invisible wavelengths across the 
electromagnetic spectrum. Active sensors send and then receive signals from the ground. Passive 
sensors receive naturally occurring visible, infrared, and thermal wavelengths, including reflected 
sunlight and heat. Both have their advantages. Unlike passive sensors, active sensors can operate in the 
presence of cloud cover and at night. As materials reflect and absorb at different wavelengths, which 
may change throughout their lifespan or in different states, passive sensors can gather information 
about changes to materials over time. 

4.2 Optical Sensors 

Optical sensors capture the emittance, reflectance and absorption of light across visible and invisible 
spectrums.15 Sensors are categorized according to spectral resolution: multispectral, and hyperspectral. 
Multispectral systems mounted on satellites detect between four and twenty bands of light. Newer 
hyperspectral systems collect information across hundreds or even thousands of narrow, contiguous 
bands of spectral bands. As well as satellites, hyperspectral sensors can be mounted on UAVs. However, 
as with all sensors, hyperspectral sensors have their limitations or at least need careful interpretation. 
For instance, saturation in dense natural forests and band redundancy requires a careful selection of 
techniques to classify tree species using hyperspectral data.16 

The information collected from optical sensors can be processed and combined in various ways to 
obtain sophisticated insights into the state and character of forest land. Near infra-red channels, for 
instance, can monitor the biodiversity of flora, exploiting the changing interaction between light and a 
plant’s chemical properties. The changing ratio of near-infrared to visible red reflects the health status 
of vegetation. Photogrammetry techniques, such as Structure from Motion Multiview Stereopsis, can 
create 3D point clouds by overlapping images. The availability of powerful platforms enabling large-area 
analysis also provides the opportunity to assess forests and vegetation over time. Hamunyela et al. for 
example, developed an approach to detect abnormal changes in time series data, and so identify 
episodes of forest disturbance. The data collected provides critical insights into forest health, growth, 
and production.17  

4.3 Synthetic Aperture Radar (SAR) 

Synthetic Aperture Radar (SAR) is an active system that can penetrate clouds and operate at night. 
SAR systems send an electromagnetic signal that, depending on the length of the wavelength (X-band, 
C-band, L-band), penetrates vegetation to different depths.  

  

 

15 Camarretta, P. A. (2020). Monitoring forest structure to guide adaptive management of forest restoration: a review of remote 
sensing approaches. _New Forests_, 573–596 
16 Fassnacht, F.E.; Neumann, C.; Forster, M.; Buddenbaum, H.; Ghosh, A.; Clasen, A.; Joshi, P.K.; Koch, B. Comparison of Feature 
Reduction Algorithms for Classifying Tree Species with Hyperspectral Data on Three Central European Test Sites. IEEE J. Sel. 
Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2547–2561. [CrossRef] 
17 Camarretta, P. A. (2020). Monitoring forest structure to guide adaptive management of forest restoration: a review of remote 
sensing approaches. _New Forests_, 573–596 
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Figure 4.1: SAR Signal Penetration by Sensor Wavelength18 

The choice of wavelength will 
depend on the study's purpose 
and the canopy's nature. C-Band 
SAR data, for example, will 
penetrate sparse boreal canopy, 
but not the denser, layered 
canopies of rainforests.19 

SAR’s ability to penetrate vegetation to different depths is particularly suited to estimating the extent 
of above-ground biomass, forest structures, and change over time. SAR data is often used to detect 
and monitor deforestation, forest degradation, and the health of mangrove forests. Like other systems, 
SAR complements optical remote sensing systems, both of which are presented in raster format. 

Spaceborne SARs have been in use for around 40 years, although they are not typically mounted on 
UAVs. Nevertheless, recent missions have demonstrated its utility. The National Aeronautics and Space 
Administration (NASA) in collaboration with the European Space Agency and the Gabonese Space 
Agency used SARs mounted on UAVs to collect data to derive forest canopy height, structure and 
topography. The data has fed into a number of studies. Luo, H. et al., for example, utilized the SAR data 
to develop models to estimate forest height for wider application.  

4.4 Light Detecting and Ranging (LiDAR) 

LiDAR systems measure the distance from the sensor to a target based on the timing of reflected laser 
signals. The resulting images are represented by 3D point clouds and are used to create digital surface, 
terrain and height models.20 Depending on the sensor deployed and the number of “return points,” 
LiDAR can give extremely rich depictions of forest structures. The first returns - the initial signal - provide 
information on the first object detected by the laser pulse. Sensors that can detect multiple returns as 
the laser passes through vegetation can fully represent ground-level structures. Full waveform depicts 
the continuous distribution of return radiation, providing a more detailed depiction of vegetation in the 
study area. 

LiDAR provides good approximations of tree height, tree volumes, and the delineation of tree crowns. 
LiDAR is often used to monitor the recovery of forest structures, monitor carbon stocks, and the 
recovery of carbon stocks. When combined with hyperspectral data and subjected to regression analysis 
and machine learning LiDAR data can significantly extend its predictive capacity. LiDAR observations 
combined with high-resolution optical images and machine learning have proved adept at 
discriminating between and identifying tree species.21 

 

18 SERVIR. (2019). _SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. Alabama: 
SERVIR Global. 
19 SERVIR. (2019). SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation. Alabama: 
SERVIR Global. 
20 Frame, D. and Garzon-Lopez, C. 2021. Applications of remote sensing for tropical forest restoration: challenges and 

opportunities. In: Elliott, S., G. Gale and M. Robertson (Eds.), 2020. Automated Forest Restoration: Could Robots Revive Rain 
Forests? Forest Restoration Research Unit, Chiang Mai University, Thailand. 
21 Gyamfi-Ampadu, E. and Gebreslasie, M. 2021. Two Decades Progress on the Application of Remote Sensing for Monitoring 

Tropical and Sub-Tropical Natural Forests: A Review. Forests 2021, 12, 739. https://doi.org/10.3390/ f12060739 
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5 Ground-based Platforms 

Ground-based platforms allow for detailed depictions of below canopy elements. Sensors can be 
placed in fixed positions or carried. Obvious downsides include a limited line of sight, and precision, 
particularly within dense forest canopy. 

5.1 Static and Ground-based Sensors 

Ground-based sensors can also provide extensive data. Commonly used sensors include: 

• Terrestrial Laser Scanners (TLS); 
• Mobile Laser Scanners (ZEB10); 
• Near Ground photogrammetry; 
• Robotic cameras; 
• C02 sensors; 
• Pollution sensors; 
• Webcams and cyclops; 
• Imaging sensors and position sensors; 
• Bird cams, arrays of microphones; 
• Fisheye photography from forest floor to capture canopy; and 
• Tree sap flow sensor systems. 

Sensors can collect an abundance of rich, but necessarily local data capturing aspects of flora and fauna, 
and changes to biodiversity, forest structures, and CO2 over time. Whilst important on their own terms, 
ground-based sensors also serve to validate remote sensing results and train algorithms. The 
Phenological Eyes Network (PEN), for example, is designed to validate remote (above ground) sensing 
using three ground-based sensors: an automatic digital fish-eye camera, a HemiSpherical 
SpectroRadiometer, and a sun photometer.22 The Forest Obesveration System is an attempt to maintain 
a forest biomass database, collating data from ground observation sites around the world to assist the 
calibration and validation of remote sensing of biomass.23 

5.2 Data Collection 

Increasingly, mobile phones provide a platform for data collection.  Drones can be used as “data mules”, 
periodically collecting data from survey sites. Researchers, including members of local communities, are 
also using apps on mobile phones connected to sophisticated data collection systems. Apps like Fulcrum 
and Kobo24, allow teams to collect and upload observations to databases and maps. Fulcrum has been 
used to collect biomass data, flora, and fauna survey data, and monitor the state of infrastructure.25 

 

 

22 Nasahara, K.N., Nagai, S. Review: Development of an in situ observation network for terrestrial ecological remote sensing: the 

Phenological Eyes Network (PEN). Ecol Res 30, 211–223 (2015). 
23 See Schepaschenko, D. et al. 2019.  The Forest Observation System, building a global reference dataset for remote 
sensing of forest biomass. Sci Data 6, 198 (2019). 
24 See: https://www.kobotoolbox.org/ 
25 See: https://www.fulcrumapp.com/customer-stories/preventing-deforestation-and-protecting-natural-resources 
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6 Sensors in Combination 

Platforms and the sensors they carry often operate best in combination. In a sense, the system becomes 
the sensor.26 When combined, sensors can compensate for weaknesses in some technologies and 
complement others. At a more straightforward level, correlations between variables can provide insights 
into observed behaviours and trends. For example, periods of low temperatures might be correlated with 
reduced bird reproduction. Maps developed from satellites or UAVs can be combined with bird cams or 
other sensors to estimate population densities. 

Complementary technologies can also provide greater insight into specific objects of study. Optical and 
3D point clouds can help with species identification - shrubs or trees may share the same spectral 
signature but have different architectural properties. Similarly, 3D systems may be able to estimate the 
volume of deadwood at a site, but optical systems may be necessary to detect deadwood in the first 
place. 

The rapid development of sensing and processing technologies also means that new uses continue to 
be developed. In a recent example, Alves de Almeida, D. et al.27 sought to establish the diversity and 
structure of restoration plantings by exploring the congruence and complementarity of lidar and 
hyperspectral data. They found that the “fusion” of UAV-borne hyperspectral and lidar data enabled the 
co-monitoring of forest structural attributes and tree diversity. 

Csillik et al.28 illustrate the contributions to forest monitoring of incremental advances and cost 
reductions of key technologies. Noting previous studies that combined satellite images with airborne 
LiDAR to map above-ground carbon density (ACD) in areas that lacked LiDAR measurements they took 
advantage of newly available high-resolution images from Dove satellites, Random Forest algorithms, 
and LiDAR measurements to map ACDs for tropical forests over extended spatial scales. The resulting 
indicators, in principle replicable at low cost, have the potential to improve the monitoring of carbon 
stocks over time.  

Data is typically collected in raster form – as a grid - or as 3D point clouds. Collected data can be 
classified as either categorical or continuous.29 Classification algorithms are applied to categorical data, 
and increasingly AI and machine learning are used to categorize landscapes. Continuous data is often 
used to find correlations between field measurements and vegetation or other indices (see below). High-
resolution data pixels can be interpreted as spatial units, such as trees, and then classified using “object-
based image analysis”. 

Many if not all datasets produced by satellites are also now made freely available. These include the 
Landsat series and data provided by the European Space Agency suite of satellites, and Google earth 
Engine also allows access to extensive global datasets. Table 6.1 provides an extensive list of open access 
ecology data sets.

 

26 Gabrys, J. 2016. Sensing an Experimental Forest: Processing Environments and Distributing Relations. In Program Earth: 
Environmental Sensing Technology and the Making of a Computational Planet (pp. 29–55). University of Minnesota Press. 
27 Alves de Almeida, D. et al. 2021 Monitoring restored tropical forest diversity and structure through UAV-borne hyperspectral 
and lidar fusion, Remote Sensing of the Environment Vol. 264 
28 Csillik, O., Kumar, P., Mascaro, J. _et al._ 2019. Monitoring tropical forest carbon stocks and emissions using Planet satellite 
data. _Sci Rep_ **9**, 17831. https://doi.org/10.1038/s41598-019-54386-6 
29 Lechner, M. et al. 2020. Applications in Remote Sensing to Forest Ecology and Management. One Earth. Accessed here: 
https://core.ac.uk/reader/328760320 



ADB | Investing in Climate Change Adaptation through Agroecological Landscape Restoration:  
A Nature-Based Solution for Climate Resilience (Technical Assistance 6539)  

ICEM and ICRAF | Applying Advanced Technologies in Support of Landscape Restoration and Climate Change Adaptation – October 2023 

  9 

 

 Table 6.1: Open Access Forest Ecology Data Derived from Remote Sensing 

Name Resolution Time scale 
Time 

availability 

Spatial 

Availability 

Satellite data 

input 
Classification system Producer Accuracy Acquisition 

Dynamic World 
land cover 

10 m Near real-
time, 
daily 

2014 - now Global Sentinel-2 9 classes Google - 
WRI 

73.8% Open access  

ESA-
WorldCover 
land cover 

10 m yearly 2020, 2021 Global Sentinel-1 and 
Sentinel-2 

11 classes ESA 75-77% Open access  

ESRI Land Cover 10 m yearly 2017 - 2021 Global Sentinel-2 9 classes ESRI 73-74% Open access 

Servir Mekong 
land cover 

30 m yearly 1987 - 2018 Mekong 
countries 

Landsat, 
MODIS 

17 classes SERVIR 
MEKONG 

78% Open access 

Global Forest 
Change 
(Hansen) 

30 m yearly 2000 - 2019 Global Landsat Forest cover 2000, 
Forest gain 2000-

2012, 
Lossyear 2000-2019 

UMD 90% Open access 

CCI Biomass 100 m yearly 2010, 2017, 
2018 

Global Sentinel1 
ALOS-1 
ALOS-2 

EnviSat ASAR 

- ESA Bias in the 
high 

biomass 
areas 

Open access 

Above-ground 
Live Woody 
Biomass 
Density (GFW) 

30 m yearly 2000 Global Landsat 
LIDAR 

 WRI  Open access 

Soilgrids250 250 m - - Global   ISRIC 
(2020) 

 Open access 

MCD64A1 (L3 
Monthly 500m 

500 m monthly - Global MODIS Burn date NASA - Open access 

https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
https://esa-worldcover.org/en/data-access
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2
https://www.landcovermapping.org/en/landcover/
https://www.landcovermapping.org/en/landcover/
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html
https://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.7.html
https://www.sciencedirect.com/science/article/pii/S0034425722000311
https://www.sciencedirect.com/science/article/pii/S0034425722000311
https://www.sciencedirect.com/science/article/pii/S0034425722000311
https://www.sciencedirect.com/science/article/pii/S0034425722000311
https://www.sciencedirect.com/science/article/pii/S0034425722000311
file:///C:/Users/Jago/Downloads/data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps/v3.0/geotiff
file:///C:/Users/Jago/Downloads/data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps/v3.0/geotiff
https://data.globalforestwatch.org/datasets/e4bdbe8d6d8d4e32ace7d36a4aec7b93_0/explore?location=3.469978,0.000000,2.66
file:///C:/Users/Jago/Downloads/data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps/v3.0/geotiff
file:///C:/Users/Jago/Downloads/data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps/v3.0/geotiff
https://lpdaac.usgs.gov/products/mcd64a1v061/
https://lpdaac.usgs.gov/products/mcd64a1v061/
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Name Resolution Time scale 
Time 

availability 

Spatial 

Availability 

Satellite data 

input 
Classification system Producer Accuracy Acquisition 

“Direct 
Broadcast” 
Burned Area) 

Global 
Mangrove 
Watch 

25 m yearly 1996 - 2020 Global ALOS-1  JAXA  Open access 

Primary Forests 30 m Yearly 2001 Tropical Landsat  UMD  Open access 

Intact forest vector yearly 2000, 2013, 
2016, 2020 

Global -  UMD  Open access 

Planted trees vector yearly Around 2015 82 
countries 

 Many classes WRI  Open access 

Global peatland 
extent 

30 m Yearly 2016-2021 
(depends on 

countries) 

Global Landsat  various  Open access 

Tree cover 
height 

30 m yearly 2000, 2020 global Landsat  UMD  Open access 

https://www.globalmangrovewatch.org/
https://www.globalmangrovewatch.org/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
https://www.globalforestwatch.org/map/
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The advent of cloud computing provides access to repositories of images, web-based mapping, high-
performance computing, and access to software. Services such as GEE help simplify intensive processes 
that once required extensive human input and computing power. Key techniques include multi-temporal 
mosaics, which produce composite images in which pixels represent median values over a specified time 
period.30 Temporal trend analysis using software such as LandTrendr can help identify and analyze 
landscapes’ disturbance and recovery over time.31 

Machine Learning can help to classify land cover types and species types. Random Forest or Support 
Vector Machines, and unsupervised learning algorithms such as K-means, K-NN, are widely used in 
remote sensing image classification. Figure 6.1 demonstrates the process by which a digital number 
representing bands of light is converted into a spatial expression of land use categories using machine 
learning. 

Figure 6.1: Remote Sensing Imagery Classification32 

Vegetation reflects different wavelengths depending 
on its health and state. Spectral reflectance, 
interpreting the contrast between near-infrared and 
visible infrared light, is used to derive vegetation 
indices, that can provide an indicator of 
photosynthetically active biomass, and vegetation 
health. It can, however, be challenging to distinguish 
between crops and trees as both have high Normal 
Different Vegetation Index (NDVI) values.33 If mean 
values are taken over three-month periods, however, 
high NDVI values can accurately be assumed to be 
forest, and indices provide a useful way to monitor 
change to forests over time. The Enhanced Vegetation 
Index (EVI) offers greater accuracy in areas with dense 
canopy.  

Other common uses include: 

• The identification of deadwood: 3D maps have been shown better to capture information at 
finer resolutions than on-ground measurements. 

• Canopy Structures: Data collected by LiDAR has been successfully used to classify canopies into 
multiple strata, quantify canopy surface dynamics and extract single tree crowns. To date, 
however, the techniques have not been applied to landscape and regional spatial levels. 

• Monitor vegetation cover: Analysis of vegetation indices can monitor land use change and 
identify regions or corridors to target restoration efforts. Combinations of techniques can 
provide information on density, stand development, and the 3D distribution of vegetation. 

• Identify tree species: Hyperspectral imagery can identify tree species with training and validation 
of machine-learning algorithms. However, there remain challenges in expanding the total 
number of species detected, identifying understory vegetation, and scaling up fine-resolution 
images to identify species over larger areas. 

• Structural complexity: Given the technical challenges in determining structural complexity over 
large areas, a common approach is identifying and tracking permanent plots of land scattered 

 

30 Lechner, M. et al. 2020. Applications in Remote Sensing to Forest Ecology and Management. One Earth. Accessed here: 
https://core.ac.uk/reader/328760320 
31 Kennedy, R.E., Yang, Z. and Cohen, W.B., 2010. Detecting trends in forest disturbance and recovery using yearly Landsat time 
series: 1. LandTrendr - Temporal segmentation algorithms. Remote Sensing of Environment, 114(12), pp.2897-2910. 
32 Source: NRCAN. (2022). Image Classification and Analysis. Retrieved from Natural Resources Canada: 
https://www.nrcan.gc.ca/maps-tools-and-publications/satellite-imagery-and-air-photos/tutorial-fundamentals-remote-
sensing/image-interpretation-analysis/image-classification-and-analysis/9361 
33 Vegetation Index: https://eos.com/blog/ndvi-faq-all-you-need-to-know-about-ndvi/. 
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through landscapes with combinations of ground-, air- and spaceborne technology. Such a 
monitoring network of plots can help to track changes to structures over time and ecosystem 
systems and services to the extent that structural complexity serves as a proxy. 

Various online tutorials provide step-by-step instructions to help analysts take advantage of rapidly 
emerging opportunities. A far-from-exhaustive list includes: 

• Open MRV: Training data collection using GEE provides a step-by-step guide to collecting 
categorical training data.34 

• Open MRV Land Cover and Land Use Classification in Google Earth Engine35 provides a guide to 
producing a training data set, training an algorithm to categorize data and create a “classifier” 
applying the classifier to an image. Open MRV requires access to and knowledge of Google Earth 
Engine. 

• ARSET - Using Google Earth Engine for Land Monitoring Applications provides training on using 
GEE capabilities.36  

• UNSPIDER - Step-by-Step: Land Cover Change Detection through Supervised Classification 
explains how to undertake a supervised land cover classification and change detection analysis.37 

 

34 OpenMRV. (2023). Training Data Collection Using Google Earth Engine. Retrieved from Open-source resources for Forest 
Measurement, Reporting and Verification (MRV): https://openmrv.org/web/guest/w/modules/mrv/modules_1/training-data-
collection-using-google-earth-engine 
35 OpenMRV. (2023). Land Cover and Land Use Classification in Google Earth Engine. Retrieved from Open-source resources for 
Forest Measurement, Reporting and Verification (MRV): https://openmrv.org/web/guest/w/modules/mrv/modules_1/land-
cover-and-land-use-classification-in-google-earth-engine 
36 See https://appliedsciences.nasa.gov/join-mission/training/english/arset-using-google-earth-engine-land-monitoring-applications 
37 See https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-land-cover-change/step-
by-step 

https://appliedsciences.nasa.gov/join-mission/training/english/arset-using-google-earth-engine-land-monitoring-applications
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-land-cover-change/step-by-step
https://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-land-cover-change/step-by-step
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7 Case Study 1: Land Cover Monitoring of the Sangker River Basin, 
Cambodia38 

Assessing forest land cover changes over time provides essential insights into forest recovery, and is   
a critical element in REDD+. This case study identifies the steps to assess land cover change in the 
Sangker River Basin in Cambodia (Figure 7.1) between 2017 and 2021. The results have informed a 
hydrological survey of the Sangker River Basin, and will form a baseline to monitor the progress of 
restoration efforts over time.39 

Figure 7.1: Position of the Sangker River Basin 

 

7.1 Developing Reference Maps for Comparison Years 

The choice of satellite imagery largely depends on the period and area studied. Sentinel-2 is increasingly 
used for the analysis of large spatial areas. However, if data is required for more extended periods 
Landsat is commonly used. Given that the study years were relatively recent, this study used Sentinel-2 
data. 

The ICEM team prepared composite images for 2017 and 2021 to be used for the comparison. Images 
of the Sangker basin were accessed using the Google Earth Engine (GEE). The composite images were 
prepared by calculating median values for all matching bands for all available images in each year. Cloud 
masking was conducted using information integrated in the Sentinel 2 data. The final composite image 
for 2021 can be seen in Figure 7.2. 

 

 

 

38 The code used in both case studies is provided in Annex A, and can be adapted to similar landscapes.  
39 Please contact ICEM for further details on restoration plans the hydrological survey of the Sangker River Basin. 
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Figure 7.2: Yearly Composite Sentinel-2 Image in the Sanker Basin 

 

7.2 Identifying and Classifying Land Cover Types 

To classify land cover types, it is necessary to collect “reference data,” in which units of land are 
attributed a land cover category. Reference data can be collected using remote sensing imagery or by 
field survey. The Sangker River Basin study applied an algorithm sourced from Random Forest to the 
2021 composite image of the river basin. The Random Forest algorithm is widely used for land cover 
classification.40 

Each pixel contained digital values representing spectral bands used to determine the land cover type. 
Five hundred and four data points were identified and organized into six categories: water (50 points), 
forest (62 points), grass (50 points), shrub and scrub (68 points), built (80 points), and crops (194 points). 
Eighty percent of the data points were used to train the algorithm and the remaining 20 percent for 
validation (Figure 7.3). 

 

 

 

 

 

 

 

 

 

40 Vegetation Index: https://eos.com/blog/ndvi-faq-all-you-need-to-know-about-ndvi/. 
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Figure 7.3: Reference Data for Land Cover Classification 

 

An error matrix was then generated to assess the accuracy of the map. Table 7.1 compares the predicted 
data points with the actual data points for the validation data set. The level of accuracy - in this case 0.77 
- is the ratio of the sum of the diagonal to the total number of validation data. 

Table 7.1: Error Matrix of Land Cover Map, 2021 Sangker River Basin 

Predicted 

Actual 

 
Forest Grass Crop 

Shrub & 
scrub 

Built Water Total 

Forest 13 0 0 0 0 0 13 

Grass 0 11 2 0 0 0 13 

Crop 0 2 44 2 2 0 50 

Shrub & 
scrub 

2 1 7 3 0 0 13 

Built 0 0 4 2 5 0 11 

Water 1 0 1 0 0 11 13 

Total 16 14 58 7 7 11 113 

 

7.3 Analysis of Land Cover Change Between 2017 and 2021 
Using the identified land cover labels, maps were produced for both 2017 and 2021 (Figure 7.4). 
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Figure 7.4: Land Cover Map of Sangker Basin 2017 – 2021 

 

To determine changes in land cover the commonly used UN-SPIDER methodology was applied. UN-
SPIDER provides a step-by-step process to conduct a supervised land cover classification, making use of 
open-source software QGIS and the Semi-Automatic Classification Plugin.41 Table 7.2 presents the 
resulting land cover changes. The rows present land-cover types in 2017, and the columns land-cover 
types in 2021. For example, in 2017, 142,590 of the Sangker River Basin was classified as forest. By 2021 
this had reduced to 129,120. The table shows 93,640 hectares were classified as forest in both years. 
Between 2017 and 2021, 15,720 hectares of forest was converted to grass, 2,430 hectares to crop 
cultivation, and so on. 

Table 7.2: Land Cover Change Matrix 

  2021 (ha)   
 

2017 (ha) Forest Grass Crop 
Shrub & 

Scrub 
Built Water Total 

% Total 
Land Area 

2017 

Forest 93,640 15,720 2,430 29,280 - 1,520 142,590 23.5% 

Grass 15,480 32,240 17,470 13,840 50 1,270 80,360 13.3% 

Crop 6,520 27,970 248,860 30,890 1,630 1,850 317,720 52.5% 

Shrub & Scrub 11,930 4,890 13,700 7,760 160 70 38,510 6.4% 

Built 10 340 6,520 1,510 1,610 50 10,040 1.7% 

Water 1,540 7,260 3,010 2,090 30 2,370 16,290 2.7% 

 

41 Data base for remote sensing indices 
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  2021 (ha)   
 

2017 (ha) Forest Grass Crop 
Shrub & 

Scrub 
Built Water Total 

% Total 
Land Area 

2017 

Total 129,120 88,420 291,980 85,370 3,490 7,130 605,510 100.0% 

% Total Land Area 2021 21.3% 14.6% 48.2% 14.1% 0.6% 1.2% 
  

% Change 2017 -2021 -2.2% 1.3% -4.3% 7.7% -1.1% -0.5% 
  

Table 7.2 shows that between 2017 and 2021, over 2.2% of the total forest area was converted to other 
uses, mostly shrub and scrub and grass land. Perhaps surprisingly, the built environment and the 
proportion of land devoted to crops fell over the four years. A net 47 thousand hectares was converted 
to scrub land in the same period. However, this figure disguises some of the dynamics of land use change. 
Whilst, 248,860 hectares of cropland remained unchanged (78%), 7,760 hectares (20% of 2017 land use) 
of land was scrub in both years, pointing to the dynamic land use changes in the intervening period. 
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8 Case Study 2: Above-ground Biomass Monitoring in the Sangker 
River Basin, Cambodia 

Estimates of above ground biomass (AGB) are useful indicators of a landscape’s ability to store carbon, 
and so inform REDD+ programs and monitor progress of restoration efforts over time.  Often, data is 
limited in resolution, available time periods and spatial coverage. Moreover, biomass surveys of target 
sites and landscapes are time consuming and expensive.  

An alternative is to identify the relationship between more readily available data and field estimates of 
biomass in comparable sites. This case study presents a process adopted from a recent study, which 
combined PALSAR data and field data to develop biomass maps in Cambodia.42 

The study undertook a field survey of 79 sampling plots in Cambodia. The sites were chosen to minimize 
any topographic effects on SAR data.  

PALSAR data was then retrieved for the same sites. At each the biomass beneath the forest canopy had 
been captured using the L-Band of PALSAR-2. The digital values of the ScanSAR data were converted to 
gamma naught (γ0), the backscatter coefficient that represents the detectability of objects by radar 
signals. Gamma naught expressed in decibel units (dB) is calculated using the following equation:43 

γ0 = 10*log10(DN2) - 83.0 (dB) 

In which: γ0 is the backscatter coefficient gamma naught, DN is the digital number value of each 
pixel 

The resulting coefficient was used to determine the AGB of the Sangker River Basin using SAR data 
retrieved from GEE, using the following equation:44 

_y_ = 1.8122ln(_x_) – 21.202 

               In which: y_ is gamma naught values of HV polarization, _x_ is the in situ data of AGB biomass. 

Using this process, the AGB of Sangker basin was estimated for the years 2017 and 2021. The change 
between the two years was then estimated by raster calculation and is expressed spatially in Figure 8.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

42 Ram Avtar, S. M. (2018). Integrating ALOS-PALSAR and ground based observations for forest biomass estimation for REDD+ 
in Cambodia. Kobe: APN. 
43 Ibid 
44 Ibid 
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Figure 8.1: The Change in Above-Ground Biomass in Sanker Basin in 2017-2021 

 

The analysis demonstrates that the total biomass in the river basin has fallen over the course of four 
years, from 17.5 million to 16.3 million tons. However, the change has not been uniformed. Most of the 
river basin has seen an increase in biomass, with the greatest increase in the headwaters.  The reason 
for that increase would need to be determined through field survey, because anecdotal evidence 
suggests that the headwaters has experienced significant forest loss.  An increase in biomass improves 
the river basin’s carbon storage capacity. The analysis also indicates that there has been significant loss 
of biomass in the lower reaches of the river basin, potentially the result of agricultural activity. Such 
analysis can help to keep track of the progress of interventions, and identify areas where there has been 
a significant change in land use. It can also help to guide adaptation strategies, suggesting areas to 
prioritize for further study or further interventions.   
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9 Summary 

• Forest restoration is increasingly a high-technology, data-intensive process. Satellites, drones, 
and ground-based sensors are producing ever more sophisticated images and data sets, 
providing invaluable insights into the health and nature of forests. 

• There is no one optimal technology or combination of technologies. The chosen approach 
needs to consider trade-offs between temporal and spatial resolution or cost and coverage, 
and must be tailored to the purpose at hand. 

• Increasingly the choice of technology must consider the software, computing power, and 
expertise available to interpret results. 

• Satellite imagery confers a range of benefits and will suffice for most uses. New generations 
of satellites carry increasingly sensitive sensors, opening up possibilities for forest monitoring. 

• Airborne technologies, particularly drones, are becoming more sophisticated and affordable 
and serve several uses, including site surveys, site monitoring, species recognition, and even 
seed collection and planting, and as "mules" to collect data transmitted by ground sensors at 
remote locations. 

• Ultimately, the most useful technology is the sensor. Sensors are characterized by their 
spectral resolution - multispectral or hyperspectral - and whether they are "passive", and so 
receive signals naturally transmitted from the earth, or "active" and able to fire and detect 
signals on their return. 

• Either on their own or combined with other sources of information, the data collected can 
provide crucial information on critical aspects of flora and fauna in a target area. Information 
includes the identification and health of species, the presence, and volume of deadwood, the 
extent of biodiversity, canopy and the structure of the forest itself. 

• Time series data can show the progress of restoration efforts and provide insights into the 
causes of forest change. 

• The advent of cloud computing provides access to repositories of images, web-based 
mapping, high-performance computing, and access to software. Data collected by UAVs can 
be used to train algorithms to examine satellite images covering more expansive areas than 
possible with UAVs alone. 
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Annex A: Script to generate maps provided in Sections 7 and 9, 
using Google Earth Engine. 

Google Earth Engine (GEE) is a powerful tool for use in forest restoration activities. The following 
code accompanies the two case studies discussed in Sections 7 and 8. An account with Google 
Earth Engine is required, and a level of familiarity with GEE is assumed. The code can be pasted 
into a code editor in Earth Engine Code Editor. The code in Annex A.1 generates figures 7.4 and 
can be adapted to produce land cover maps of target landscapes. The code in Annex A.2 
generates figure 8.4, and can be adapted to generate maps that illustrate changes in biomass 
over time in target locations. 

Annex A.1: Code to generate land cover maps (Figure 7.4) 

The following code generates the map depicted in Figure 7.4. 

1. 

 
 

////******Part 1: Scoping imagery, preprocessing ****** 
2. /////////////////////////////////////////////////////// 

3.   

4. function maskS2clouds(image) { 
5.   var qa = image.select('QA60'); 

6.   

7.   // Bits 10 and 11 are clouds and cirrus, respectively. 
8.   var cloudBitMask = 1 << 10; 
9.   var cirrusBitMask = 1 << 11; 
10.   // Screen out bright value, which is also cloud 
11.   var blue=image.select('B2') 
12.   var green=image.select('B3') 
13.   var red=image.select('B4') 

14.   

15.   // Cloud masking 
16.   var mask = qa.bitwiseAnd(cloudBitMask).eq(0) 
17.       .and(qa.bitwiseAnd(cirrusBitMask).eq(0)) 
18.       .and(blue.gt(2000).eq(0)) 
19.       .and(green.gt(2000).eq(0)) 
20.       .and(red.gt(2000).eq(0)); 
21.       // .and(BGratio.gt(1.3).eq(0)); // if conduct cloud shadow removal 
22.   return image.updateMask(mask); 
23. } 

24.   

25. // Data scoping 
26. var S2MSI_sangker_2021_L1C_yearlycomp = ee.ImageCollection('COPERNICUS/S2') 
27.                   .filterDate('2021-01-01', '2021-12-31') 
28.                   .map(maskS2clouds) 
29.                   .select(['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B9','B10

','B11','B12'], ['Coastal aerosol','BLUE','GREEN','RED','Veg Red Edge B5', 'Veg 
Red Edge B6', 'Veg Red Edge B7','NIR','Narrow NIR','Water Vapour','SWIR 
cirrus','SWIR1','SWIR2']) 

30.                   .median() 
31.                   .toUint16(); 

32.   

33. var rgbVis = { 
34.   min: 0, 
35.   max: 3000, 
36.   bands: ['RED', 'GREEN', 'BLUE'], 
37. }; 

38.   
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39. Map.addLayer(S2MSI_sangker_2021_L1C_yearlycomp, rgbVis, 'Sentinel2-RGB'); 

40.   

41. // Boundary of sanker 
42. var shp = ee.FeatureCollection(polygon) 
43. var shpVis = shp.style({ 
44.   color: '17202A ', 
45.   width: 2, 
46.   fillColor: 'ff475700',  // with alpha set for partial transparency 
47.   lineType: 'dotted', 
48.   pointSize: 10, 
49.   pointShape: 'circle' 
50. }); 

51.   

52. ////******Part 2: Add Developed Land Cover Data For making reference data****** 
53. ////////////////////////////////////////////////////////////////////////////// 

54.   

55. // var startDate = '2021-01-01'; 
56. // var endDate = '2022-01-01'; 
57. // var geometry = ee.Geometry.Rectangle([102.4,12.2,103.9,13.4]); 
58. // var dw = ee.ImageCollection('GOOGLE/DYNAMICWORLD/V1') 
59. //             .filterDate(startDate, endDate) 
60. //             .filterBounds(geometry); 
61. // var classification = dw.select('label'); 
62. // var dwComposite = classification.reduce(ee.Reducer.mode()); 
63. // var dwVisParams = { 
64. //   min: 0, 
65. //   max: 8, 
66. //   palette: [ 
67. //     '#419BDF', '#397D49', '#88B053', '#7A87C6', '#E49635', '#DFC35A', 
68. //     '#C4281B', '#A59B8F', '#B39FE1' 
69. //   ] 
70. // }; 

71.   

72. // // Clip the composite and add it to the Map. 
73. // Map.addLayer(dwComposite.clip(geometry), dwVisParams, 'Classified Composite'); 

74.   

75. ////******Part 3: Prepare for the classification****** 
76. ////////////////////////////////////////////////////// 

77.   

78. //merge reference data 
79. var reference = water.merge(forest) 
80.                     .merge(grass) 
81.                     // .merge(flooded_vegetation) 
82.                     .merge(shrub_scrub) 
83.                     .merge(built) 
84.                     .merge(crop); 

85.   

86.   

87. // get the labels from these training points.  
88. var bands_to_use = ['BLUE','GREEN','RED','NIR','SWIR1','SWIR2'] 

89.   

90. // Now do a spatial overlay of the points on the image, and extract 
91. var landcover_labels = 'label' 
92. var reference_extract = 

S2MSI_sangker_2021_L1C_yearlycomp.select(bands_to_use).sampleRegions({ 
93.   collection: reference, 
94.   properties: [landcover_labels], 
95.   scale: 10 
96. }).randomColumn(); 
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97.   

98. //Randomly split the samples to set some aside for testing the models accuracy 
99. //using the "random" column. Roughly 80% for training, 20% for testing. 
100. var split = 0.8; 
101. var training = reference_extract.filter(ee.Filter.lt('random', split)); 
102. var testing = reference_extract.filter(ee.Filter.gte('random', split)); 

103.   

104. //Print these variables to see how much training and testing data you are using 
105. print('Samples n =', reference_extract.aggregate_count('.all')); 
106. print('Training n =', training.aggregate_count('.all')); 
107. print('Testing n =', testing.aggregate_count('.all')); 

108.   

109. var classifier = ee.Classifier.smileRandomForest(300,5) 
110.   .train(training, landcover_labels, bands_to_use); 
111.     

112.   

113. //Test the accuracy of the model 
114. //////////////////////////////////////// 

115.   

116. //Print Confusion Matrix and Overall Accuracy 
117. var confusionMatrix = classifier 
118. print('Confusion matrix: ', confusionMatrix); 
119. print('Training Overall Accuracy: ', confusionMatrix.accuracy()); 
120. var kappa = confusionMatrix.kappa(); 
121. print('Training Kappa', kappa); 
122.    
123. var validation = testing.classify(classifier); 
124. var testAccuracy = validation.errorMatrix('label', 'classification'); 
125. print('Validation Error Matrix RF: ', testAccuracy); 
126. print('Validation Overall Accuracy RF: ', testAccuracy.accuracy()); 
127. var kappa1 = testAccuracy.kappa(); 
128. print('Validation Kappa', kappa1); 

129.   

130. var classified = 
S2MSI_sangker_2021_L1C_yearlycomp.clip(shp).select(bands_to_use).classify(classifi
er); 

131.   

132. ////******Part 5:Create a legend****** 
133. ////////////////////////////////////// 

134.   

135. // Set position of panel 
136. var legend = ui.Panel({ 
137.   style: { 
138.     position: 'bottom-left', 
139.     padding: '8px 15px' 
140.   } 
141. }); 
142.    
143. //Create legend title 
144. var legendTitle = ui.Label({ 
145.   value: 'Classification Legend', 
146.   style: { 
147.     fontWeight: 'bold', 
148.     fontSize: '18px', 
149.     margin: '0 0 4px 0', 
150.     padding: '0' 
151.     } 
152. }); 
153.    
154. //Add the title to the panel 



ADB | Investing in Climate Change Adaptation through Agroecological Landscape Restoration:  
A Nature-Based Solution for Climate Resilience (Technical Assistance 6539)  

ICEM and ICRAF | Applying Advanced Technologies in Support of Landscape Restoration and Climate Change 
Adaptation – October 2023 

24 
 

155. legend.add(legendTitle); 
156.    
157. // Create and style 1 row of the legend. 
158. var makeRow = function(color, name) { 
159.    
160.       var colorBox = ui.Label({ 
161.         style: { 
162.           backgroundColor: '#' + color, 
163.           padding: '8px', 
164.           margin: '0 0 4px 0' 
165.         } 
166.       }); 
167.         
168.       var description = ui.Label({ 
169.         value: name, 
170.         style: {margin: '0 0 4px 6px'} 
171.       }); 
172.    
173.       return ui.Panel({ 
174.         widgets: [colorBox, description], 
175.         layout: ui.Panel.Layout.Flow('horizontal') 
176.       }); 
177. }; 
178.    
179. //Identify palette with the legend colors 
180. var palette =['419BDF', '397D49', '88B053', 'E49635', 'DFC35A','C4281B']; 
181.    
182. //Identify names within the legend 
183. var names = ['Water','Forest','Grass', 
184.             'Crop','Shrub_Scrub','Built']; 
185.    
186. //Add color and names 
187. for (var i = 0; i < 6; i++) { 
188.   legend.add(makeRow(palette[i], names[i])); 
189.   }   

190.   

191. //Add legend to map 
192. Map.add(legend); 

193.   

194. ////******Part 6: Display and Export ****** 
195. /////////////////////////////////////////// 

196.   

197. //Create palette for the final land cover map classifications 
198. var Palette =  
199. '<RasterSymbolizer>' + 
200. ' <ColorMap  type="intervals">' + 
201.     '<ColorMapEntry color="#419BDF" quantity="7" label="Water"/>' + 
202.     '<ColorMapEntry color="#397D49" quantity="1" label="Forest"/>' + 
203.     '<ColorMapEntry color="#88B053" quantity="2" label="Grass"/>' + 
204.     '<ColorMapEntry color="#E49635" quantity="4" label="Crop"/>' + 
205.     '<ColorMapEntry color="#DFC35A" quantity="5" label="Shrub_Scrub"/>' + 
206.     '<ColorMapEntry color="#C4281B" quantity="6" label="Built"/>' + 
207.   '</ColorMap>' + 
208. '</RasterSymbolizer>'; 

209.   

210. //Add final map to the display 
211. Map.addLayer(classified.sldStyle(Palette), {}, "Land Classification"); 
212. Map.addLayer(shpVis, {}, 'Sanker boundary'); 

213. Map.setCenter(103, 13,9); 
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Annex A.1 Code to estimate Aboveground Biomass using Google Earth Engine 

The following code generates the map depicted in Figure 8.4. 

 

1. // var shp = ee.FeatureCollection(polygon); 
2. var region_sangker = ee.Geometry.Rectangle([102.4,12.2,103.9,13.4]); 
3. var sarHV = ee.ImageCollection('JAXA/ALOS/PALSAR-2/Level2_2/ScanSAR') 
4.                   .filterDate('2020-01-01', '2020-12-30') 
5.                   .select('HV') 
6.                   .filterBounds(polygon) 
7.                   .median(); 
8. // var sarHV = dataset.select('HV'); 

9.   

10. var gammaHV=sarHV.pow(ee.Number(2)).log10().multiply(10).subtract(83) 

11.   

12. // calculate biomass based on study of Ram Avtar (2018) 
13. var biomass=((gammaHV.add(21.202)).divide(1.8122)).exp() 
14. print(biomass) 
15. // var sarHVVis = { 
16. //   min: -30, 
17. //   max: 0, 
18. // }; 

19.   

20. var biomassVis =  
21. '<RasterSymbolizer>'+ 
22.   '<ColorMap type="intervals" extended="false">'+ 
23.     '<ColorMapEntry label="<= 0" quantity="1" color="#f8f8f8"/>'+ 
24.     '<ColorMapEntry label="0 - 50" quantity="50" color="#ffffcc"/>'+ 
25.     '<ColorMapEntry label="50 - 100" quantity="100" color="#e4f4b6"/>'+ 
26.     '<ColorMapEntry label="100 - 150" quantity="150" color="#c9e99f"/>'+ 
27.     '<ColorMapEntry label="150 - 200" quantity="200" color="#a9dc8e"/>'+ 
28.     '<ColorMapEntry label="200 - 250" quantity="250" color="#88cd80"/>'+ 
29.     '<ColorMapEntry label="250 - 300" quantity="300" color="#68be71"/>'+ 
30.     '<ColorMapEntry label="300 - 350" quantity="350" color="#48af60"/>'+ 
31.     '<ColorMapEntry label="350 - 400" quantity="400" color="#2b9d51"/>'+ 
32.     '<ColorMapEntry label="400 - 450" quantity="450" color="#158244"/>'+ 
33.    '<ColorMapEntry label="> 450" quantity="500" color="#006837"/>'+ 
34.  '</ColorMap>'+ 
35. '</RasterSymbolizer>'; 

36.   

37.   

38. // print(sarHV) 
39. Map.setCenter(103, 13,9); 
40. // Map.addLayer(gammaHV.clip(polygon), sarHVVis, 'SAR HV'); 
41. // Map.addLayer(biomass.clip(polygon), biomassVis, 'biomass'); 
42. Map.addLayer(biomass.clip(polygon).sldStyle(biomassVis),{}, 'biomass'); 
43. var shpVis = polygon.style({ 
44.   color: 'ea2119 ', 
45.   width: 2, 
46.   fillColor: 'ff475700',  // with alpha set for partial transparency 
47.   lineType: 'dotted', 
48.   pointSize: 10, 
49.   pointShape: 'circle' 
50. }); 
51. Map.addLayer(shpVis, {}, 'Sanker boundary'); 

52.   

53. // set position of panel 
54. var legend = ui.Panel({ 
55.   style: { 
56.     position: 'bottom-left', 
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57.     padding: '8px 15px' 
58.   } 
59. }); 

60.   

61. //Create legend title 
62. var legendTitle = ui.Label({ 
63.   value: 'Biomass estimated (Mg/ha)', 
64.   style: { 
65.     fontWeight: 'bold', 
66.     fontSize: '18px', 
67.     margin: '0 0 4px 0', 
68.     padding: '0' 
69.     } 
70. }); 
71.    
72. //Add the title to the panel 
73. legend.add(legendTitle); 

74.   

75. // Creates and styles 1 row of the legend. 
76. var makeRow = function(color, name) { 
77.    
78.       // Create the label that is actually the colored box. 
79.       var colorBox = ui.Label({ 
80.         style: { 
81.           backgroundColor: '#' + color, 
82.           // Use padding to give the box height and width. 
83.           padding: '8px', 
84.           margin: '0 0 4px 0' 
85.         } 
86.       }); 
87.    
88.       // Create the label filled with the description text. 
89.       var description = ui.Label({ 
90.         value: name, 
91.         style: {margin: '0 0 4px 6px'} 
92.       }); 
93.    
94.       // return the panel 
95.       return ui.Panel({ 
96.         widgets: [colorBox, description], 
97.         layout: ui.Panel.Layout.Flow('horizontal') 
98.       }); 
99. }; 

100.   

101.   

102. //  Palette with the colors 
103. var palette =['f8f8f8', 'ffffcc', 

'e4f4b6','c9e99f','a9dc8e','88cd80','68be71','48af60','2b9d51','158244','006837']; 
104.    
105. // name of the legend 
106. var names = ['0','1 - 50','50 - 100','100 - 150','150 - 200','200 - 250','250 - 

300','300 - 350','350 - 400','400 - 450','> 450']; 
107.    
108. // Add color and and names 
109. for (var i = 0; i < 11; i++) { 
110.   legend.add(makeRow(palette[i], names[i])); 
111.   }   
112. // add legend to map (alternatively you can also print the legend to the 

console) 
113. Map.add(legend); 
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